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PERIODIC AND CONDITIONALLY PERIODIC SOLUTIONS IN THE PROBLEM 
OF MOTION OF A HEAVY SOLID ABOUT A FIXED POINT* 

1u.V. BARKIN 

Several sets of periodic and conditionally periodic solutions of the problem of 
motion of a solid about a fixed point in a homogeneous gravitational field are in- 
vestigated. The theory of periodic solutions of Poincare for Hamiltonian systemsof 
standard form are used for proving the existence of such solutions, for analyzing 
stability and deriving basic terms of their representative series. The distribution 
of mass in the body is assumed to be close to axisymmetric and the fixed point to 
be near the center of mass. 

The existence of periodic solutions in the problem of motion of a solid with a fixed 
point proved in /l/, where the Poincare' method was used for obtaining two sets of periodic 
solutions, generated by the respective Euler's periodic solutions, for axisymmetric and non- 
symmetric solids. Existence of similar solutions was earlier indicated by the authors of /2/. 

1. Consider the motion of a solid body about a fixed point Oin a homogeneous gravitat- 
ional field. Let Oxyz be a fixed coordinate system with origin at the body fixed point 0 
and axis Oz directed vertially upward, Ogq;llr, be a system of coordinates whose axes coincide 
with the body principal axes of inertia about 0. We introduce two intermediate planes Q1 
and QI passing through the fixed point, the first orthogonal to vector G of the rotarymotion 
moment of momentum and the second orthogonal to segment OC joining the fixed point and the 
body center of mass C. 

The position of the body center of mass is determined in its "proper" coordinate axes by 
the constant coordinates r, cp,h, where h is the angle between axis Og and the line of inter- 
section of planes O&l and Qz,cp is the angle between the line OC and the axis of inertia O<, 
and r is the length of OC. 

We define the body rotary motion about the fixed point by the canonical Andoyer variables 

L, G,H, 1, g,h /2/, in which the kinetic energy T and the force function of the problem areof 
the form 

GP - La co@ I 
T=---2- -+- 

( 
sin” 1 

A +-%? ) 
L” 

U = mrRrP[(a sin h - fi cos A)sin cp + y Cos cpl 

where A, B, C are the body principal moments of inertia, n is a constant coefficient equal to 
the angular velocity of motion on a circular orbit of radius R (close to the planet surfaceh 
ns = fmolR8, f is the gravitational constant, m, and mare, respectively, masses of the planet 
and of the solid body, R is the radius of the planet generating the gravity field, and a,f$,v 
are directional cosines of the gravity force vector in the moving axes G&l5 

a = sin p(CosZ sin g + sin I cos g Cos 8) + COS p sin I sin 8 
fi = -sin p (sin 2 sin g - co9 I! cos g cos 8)-i- cos pcos 1 sin 8 
y = -Sin p sin 8 COB g -I- co9 8 cos p 
(cos 0 = L/G, cos p = H/G) 

where 0 is the angle between the body axis of inertia 05 and vector G,p is the anglebetween 
the fixed (vertical) axis OZ and vector G. 

We pass, for convenience, to new canonical variables in conformity with one of the form- 
ulas 

Lj=-& 
I 

G’=$-, 
I 

Iv=*, l’=l, g’ = g, 
1 

h’=h, r=qt, F’=&. (i = 1, 2) 
I 
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where r is the new independent variable, and F' is the transformed Hamiltonian. in t21e Eir:;t 
ca5e ml = n, and in the second wS = n,(O), where n,(o) is the unperturbed angular velocity ;,fI 
rotation of the body nz(@ = G&A (G,is the respective moment of momentum). 

Omitting for simplicity the primes at new variables, we represent the equations or rotary 
motion in the form 

dL dF dG i)F dH dt 
yg--=T x=---, x=x & 
dl dF a aF dh dF 

dt=---x> x=-d:;, -z-=---ST 

F= -9 (sin2 1 + $ cos'l)- -& L2 + U 

U = pi [(a sin h - fi cos h) sin v, i_ y cos cpl, i = 1, 2 

:1.11 

where either & = mrliJA or pS == r?mrRJn,fO~A. Obviously O< PI<~ if the fixed point 0 is 
fairly close to the body center of mass, and 0< pz<l provided that the angular velocity of 
rotation of the body is high in comparison with the angular velocity n (with mrR/AEj). 

We introduce in the investigation the small parameter defined by ~1 -= mas {)LI, IA--Bl/A) 
on the supplementary assumption that density distribution in the body is close to axisymmetric 
and the parameters I+~ and IA -I3 iiA are of the same order. Let p = I*1 = (q - I)$-', where 
q=A 13 and 6 is a dimensionless parameter of order unity. 

As the result, the Hamiltonian is reduce to the standard form 

F = F, (L, G) 4 @‘I CL, G, ff, 4 g) (1.2) 

F. = --G2/2 - Lz (AIC - I)/2 

FI = fo,o t fo.1 cos g -j- f2,” cos 21 -I- f*,o cos (1 -- h) -t 
fl,l cos (1 + g -j- h) + j,,-lcos (I - g -7 h) 

where the coefficients fk,,k. are defined by the sequence of formulas 

fo,o = --'/,6G2sinatI + cosy,cospcos0, I,,,* = -cosq sinpsino 
fe,o = --‘146G2 sjna 8, fl,o = - sintp cospsin 6 
fII = -l~~s~n~sin~(~ -I- COST), fi_l = --'!,sinpsinrp (--1 7- cos ES) , 

(1.3) 

The general solution of Eqs. (1.1) - (l.3) is defined by the initial values L,, G,, H,, I,, g,, 
h, and the constant parameters x = RIG, 6, 'p, h, b. 

2. The next problem is to be establish the existence of periodic solutions of Eqs. (X.1) 
and to study these at small values of parameter ~1. 

When p=O, the equations have a set of periodic solutions of period T 

L = L,, G = G,, H --: A, (2.1) 
I = nl% -i- z,, g _= npr -/- go, h = ILo 

n,@) .=: (?t - 4)L,, Q’) = G,; G, = (X - i)L,iV,/Nz 

Ngz&Q) = Ngz,(O), T = 2wVl/n,(Uf = ZnN,/n#‘) (2.2) 

where NI and Nz are integers (commensurability indicators), L,, Ho,&, g,, h, are arbitrary con- 
stants of integration, and G,is determined by the commensurability condition (2.21. 

Solution (2.11, (2.21 implies that the dynamic symmetry axis 05 of the body describes a 

case of constant apex half-angle 8,(cos6l, = L,/G,) relative to the unperturbed moment of mom- 
entum vector Go whose orientation in space is constant. Simultaneously the body uniformly 
rotates about its axis of symmetry at the angular velocity nl(@). For every Nz revolutions 

about the axis of inertia 05 the body axis of symmetry describes the conical surface it'1 

times. 
For small values of parameter p Eqs.(l.l) also admit periodic solutions of period 1', but 

only in the case of those generating solutions of (2.1) that satisfy the group of conditions 

/3/ NinI(") : N2n,@) (2.31 

&(I‘,) # 0, A, (jr;& z 0 (2.4) 

d [F,l/dg, = cl. [FJ/H(J ; 0 (2.5) 
II 
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where [FJ is function Flaveraged over period T, Arza are Hessians of functions PO and F1 
with respect to respective variables L,G and g, H, calculated for the generating values of 
variables, i.e. for p = 0. 

The condition of commensurability (2.3) determines the generating angle O = 0,, depending 
on the dynamic parameter x =A$ and the type of commensurability cos O. = iv,/(N~(x-- 1)) (Fig. 
1). 

Calculation shows that AI = x - 1, which means that the first of conditions of exist- 
ence (2.4) is satisfied for any generating solutions (2.11, (2.2). 

If the commensurability indicator satisfies the inequality INI I + INa 1 >3, then [r;,f = 
fo,@ (L,,G,) and the second condition of existence in (2.4) is violated for the respective 
periodic solutions. In connection with this it is interesting to investigate periodic solu- 
tions to which correspond the commensurability indicators Nr=N,=l or N1=-N,=l 

In the case of commensurability N1=N, = 1 we have 

IF11 = fg + $4 co.3 (b, - go + h) 
fE!o, = --‘/46Goa sinBOo + cosa,cospocos O. 

& = --'/%sin p. sin cp (-1 -j- cos e,) 

where the index(O) denotes the generating value of the respective variable. 

D 3r L-f 
a 7 3 

Fig.1 

The first of Eqs.(2.5) has the following solutions: 

1) po = 0, TE, 2) 90 = 0, 3) ip =O,a, 4)2, - go f h = O,n, 

and the second equation reduces to the form 

coscpsinpocose,~~/,cosp,sincp(--l+c0se~)C~(z0-gg,_th)=0 

The analysis of condition A,+0 shows that it is violated by solutions l)-3). 
the generating periodic solutions are determined by formulas 

IO - go -!- h = O,n,cosq~sinp~cos0, _t V,cosp, sincp (,- 1+ cosOo)8 = 0 

e = c0s(2, -g, + h) = t_l 

for which 

Hence 

(2.6) 

&al sinT(cost&-11)s 
2Go* sinpo I COScpCOSpoCOS~0 +~Jinposincp(cos80--)8]~0 

except for cp = 0, nf2, x, Oo = 0, nf2 (pc = 0, n12, n). 

Theorem 1. The equations of motion (l.l)- 
values of parameter p(O<p< ~.L"_o 

(1.3) of a heavy solid have, for fairly small 
a set of periodic solutions which are generated from 

solutions (2.1) of unperturbed equations for 
0, z 

cos e. =(x - 
(e. z 0, dz; tp + w2, z), 

U-f &PO = tgcp (x - 2)e/2, 20 - go + L = 
arbitrary initial conditions GO, &, go, and parameters x >2, 

O< (P<n, O<h<Zx, &O<P<;cio<K 
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3. The equations of motion of a solid have two first integrals P =cr =const and fi ==c2 t= 
const, because of this the four characteristic indices of the obtained periodic solutions are 

zero /3/. The two other characteristic indices can be formally represented in the form of 
series CZ(*+~) = a1(L2)1/~ f a,('+ + . . . . whose basic coefficients are calculated using the method 
/3/ 

~(1,~) = -+- [I/, xsin p. sin cp (cos B. - l)s]‘/~ - 

Thus the necessary conditions of stability are satisfied by solutions (2.6) when e = 1. 
The respective generating periodic solutions are determined by formulas 

cosf3, =l!(x - ~)(~~z),tg~~ = tgcpQx-- 2)/21,Z,-- p* i- h = 0 (3.1) 

Curves of j~~(m~ n) corresponding to solution (3.1) are shown in Fig.2 by solid lines. 

4. The periodic solutions of Eqs.(l.l)- (1.3) close to the generating solution (3.1.) are 
represented by infinite series in powers of the small parameter p 

L = Lo + PLl + $L, -; . . . (4.1) 
G = G,, -+ pG, f $Gz -f- . . . 
. . . * .I.. * * ..‘ . . * 
h = h,, $- plhl + @‘h, -I- . . . 

where L,, G,,. . ., h, {S = 1, 2, . . . .) are periodic functions of 7, which are to be determined.When 

p=o, solution (4.1) becomes the respective generating periodic solution. 
We present below the formulas for solution (4.1) accurate to p 

A5 = Lc 5 p {L 1(o) .+. &(') ees (z + I, + h) 3_ Ll(Z) cos 2 (z + lo) + A,(“) cos (2z + lo + go “+ A)) (4.2) 

z = z + lo + F (Et(l) sin (.t + Ztl + h) + ZL(~) sin 2 (a + IO)+ 1P sin (a + go) -/- ZP sin (Zz -t IO -/- go + X)} 

G = Go + Jo {G+O) + GP cos (z + go) + GI(‘) cos (2~ + lo -!- go -t- A)) 

g = z + go + p {g&l) sin (z $ lo + h) + gP sin 2 (.c i- 1,) + gP sin (z + go) + gr(') sin (2T -i- I, + go -+ A)) 

h = h, + p 

Coefficients Ll@f, 

H = Ho -;- p {H&O)) 
{h&Q sin (z + I, -+- h) + hP) sin (z -f- go) + h.P sin (22 -k f, + go + A)} 

G#f, . *, hi are determined using the sequence of formulas 

(4.3) 

L,(") = (x - I)-" 
i 
+_Go cos 60 + a], 

h 
G1t”’ = - T Go _t cos Boa 

(4.4) 

a=% coscpcospo--salnp,sin(r 
'i I. i 

Lj"=-sin tp ~osp~siil8~, L1@) = --.$ GoSsinzt&, 

G&1)= -Ooscpsinposin e. 
Gl@) = Ii.,@) = --l/d sinv sinp,,(l $ c0s0~) 

II(l) = - -& ctg& sinrpcosp,-((?t - l)ein~~cosp~sin0~, 

&(s)=- +- ctg&coscp sinpo 
0 

L5('@ = $GoeosOo ----&ix - 1 jGoa sin’& 

&(*) = -& sin cp sin o. + t (x- 4) GI”) 
0 

g&l) zzz sincpeosp,cos200 G, Yin f& , g1(2) = _!ijz 

g&S) = - C,s~~~~,n~(cosaposina80 + cos5Besin2po)+ G1”) 

g,(e) = - % [ctg p;, cos p. (1 + cost_),) -- cos B. sin po] i- f Glcz) 

&cl, =_y , 
0 

J&p = - & c1g po eos(,,cos 'p sin eo 

h1(3) = --& ctgpOcosposin~(l + 205%) 

The expression for H,(O) is not adduced owing to its unwieldiness. 
Note that the coefficients in (4.4) are calculated for generating ValueSOf GO, 00, PO, I,, fici, 

determined by formulas (3.11. 
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Let us list some of the properties of periodic solutions, viz: 
1) the initial conditions of these solutions are approximately defined by formulas 

L = Lo + @r(O) + . . ., G = Go + pGd”) -t . . ., 

h = ho + . . . 

2) projection of the moment of momentum vector on the 02 axis 
$7,(O) + . . . = const for each periodic solution of (4.2)- (4.4); 

is constant aa is Ho+ 

3) the moment of momentum vector G performs periodic oscillations of small amplitude 
close to its initial position in space; 

4) small amplitude periodic oscillations determined by formulas (4.4) are superposed on 
the regular precession motion of the body relative to vector G. 

5. We now use the first integral H = c, to lower the order of Eqs.(l.l) by two units, 
reducing by this the problem to a two-stage one and the equations of motion to the form 

dL aF dl aF ClG OF 
-=al, 

d% 
dt=---x, 

dF 4-_ x=iigv at at: (5.1) 

The Hamiltonian F is determined using the same (1.2) and (1.3) formulas in which it is 
sufficient to set cosp = c,/G, i.e. F = Fo(L,G)+ pFr(L, G, Z,g). Having obtained any solutionof 

Eqs.(5.1), we calculate variables H and h by formulas 

H=cz, h-ho=-+ (h,=h(z,)) (5.2) 

Existence of Poincare' periodic solutions ';or Eqs.(5.1) was investigated in /l/. 
Equations (5.1) have a set of periodic solutions which for p = 0 become the following 

generating solutions: 

L = Lo, G = Go, I = Q’)z. + lo, g = n&Ok + go (5.3) 

nlco) = n,(O) = (x - l)Lo = Go, lo - go + h = 0, a& co9 80 = (x - I)-’ (x > 2) 

which is periodic of period T = 2nlGo and corresponds to the case of commensurability nl(0) = 

n,(O) (similar solutions obtain in the case of commensurability nl(') = -ndO)). 
In the generating solution the following are selected arbitrarily: Go, the magnitude of 

vector G which determines the period of periodic solution; go, the angular distance between 
the planes OZy ma OEq on the intermediate plane; and the constant parameter x >2. Solu- 
tions to which correspond the following values cg= 0, cp = 0, 1x12, n,Bo=O are to be excluded 
from solutions (5.3). 

Principal terms of series representing periodic solutions are defined by formulas (4.2) 
and (4.4) in which PO,% Go, x, 6, are generally arbitrary. 

The necessary conditions of stability are satisfied by those of periodic solutions for 
which cos eo = (x - I)-', lo -go + h = 0. 

Generally conditionally periodic solutions of the input equations (4.1) correspond to 
periodic solutions of the reduced system of Eqs.(5.1). 

Indeed, by calculating the quadrature in (5.2) using L,G,I,~ defined by formulas (4.2) 
and (4.4) we obtain 

I- ho = pAt t- p {(b”) + h@)) sin (z + go) + A,@) sin 2 (r + go)) 

where Al(l), /ho), h,@) are constant coefficients determined by formulas (4.4) with the generating 
values of variables G,,0, and arbitrary angular velocity ~,,,a phn of the "secular" variation 
of the position of the moment of momentum vector G 

Thus in the case of the considered here solutions vector G describes during time T,, = 
2ni(pAn) a cone with the apex half-angle p about a vertical line. At the same time oscilla- 
tions of small amplitude of order pare superposed on the slow uniform rotation of vector G. 
In the coordinate system attached to vector G a body which is close to a dynamically axisym- 
metric performs periodic rotary motions of period T = 2n/nl(o). In the particular case, when 
A = 0, vector G performs only periodic oscillations of small amplitude about its initialposi- 
tion. Then pois determined using formula (2.6) and the conditionally periodic solution be- 
comes the periodic solution (4.2)- (4.4). 

Theorem 2. With fairly small values of parameter p the equations of motion ofaheavy 
solid about a fixed point admit a g-parameter set of conditionally periodic solutions for 
which the initial conditions Go, go, po, ho and the problem parameters x> 2, O<cp <n(cp#n/2), 
0 d h < 2n, 6, 0 <P < po< 1. are aribtrarily selected. 
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Note that the obtained here solutions are of a very general character, since they conta;n 
9 arbitrary parameters. For comparison we present the respective arbitrary initial conditions 
and dimensionless constants in known solutions of this problem. 

The Euler solution: 8 parameters G,,R,, pO, J,, <O,h,,~. 'I, constraint r-- ,:. 
The Lagrange solution: 9 parameters G,,, BO, po. I,, g,. h,, x, r, I , constraints on parameters ;j ~- 1. 

cp=O,n. 
The Kovalevska solution: 8 parameters GO, @a, PO, 10, g,, /lo, r, h I constraints on parameters x z= 2. 

q=l, cp=nlZ. 

TheHesse- Appelroth solution: 8 parameters C,,~~,i,,g~, h,,%,q.r, constraints on initial con- 
ditions and parameters 

6. Using 
reduce them to 

the theorem on 

the energy integral F = cl we lower the order of Eqs.(5.1) by two units and 
the form of Whittaker equations. For this we apply to equation 

Fe(L, G) + @,(hC, G, l,g) - ~1 = 0 

implicit function and solve it for the variable G. We obtain 

This enables us to write the equations of motion of a solid in the form 

dL dD dl &P 
-=-z- ’ dg=--z @ 

(6.1) 

d, = ‘D”(L) -t I(@1 (L, I, g) + $“cI,, (L, 1, g) 

where @ is the new Hamiltonian representable in the form ofinfiniteseries in powers of para- 
meter IL, and convergent for fairly small values of that parameter O<~<~O<l. 

If one succeeds in obtaining some solution of Eqs.(6.1), a solution of the input differ- 
ential equations (1.1) defined in quadratures 

H = c$, G = d, (L, 1, g) (6.2) 

(6.3) 

where g,, h, are values of variables g and h when z = r,,, corresponds to that solution. 
When p = 0 Eqs.(G.l) have periodic solutions 

L = L,, 1 = 10 = n@)g + lo, s(O) = XD,IBLI, = (x - l)L&D,o = nr(%,(@) = NZI'NI (6.4) 

where 70 is a rational number. 
We seek periodic solutions of Eqs.(6.1) close to solutions (6.4) in the formofpowerser- 

ies 
L = Lo + PLl + $L, + . . ., 1 = P + pll -i- y21, + . . (6.5) 

where L,, 1, are periodic functions of variable g. 
In the case of commensurability N1 = N, = 1, considered above for the input differential 

equations, the conditions of existence of series (6.5) are of the simple form 

P.D,IaL,~ # 0, a WJDllidl, = 0, ae [aJ,,l/az,~ # 0 
I@,11 = -Go-’ [fo,o (L,) + fl.71 (4 cos (20 + 111 
fo,o = 1/4G,a sin2 CtO - cos cp cos pO cos BO, 
fl,-1 = l/,sinp, sin rp (-1 + cos 0,) 
Go = [--Zcl - (x - l)Loa]‘l~, cos p. = cJG,, cm B. = L,,G, 

where [@I represents function Q1 = D1 (L,, I,, g) averaged over the period T = 2s. 

Thus solutions of Eqs.(G.l) periodic in g exist when parameter p is reasonably small and 
L, = & K&/(x (1 - x))l’/p, 1, + h = 0, n, if only pO # 0, n; cp # 0, n; 60 # 0. 

The solutions of input equations (1.1) correspond to the obtained here periodic solutions. 
Without attempting to derive these solutions, we shall point out their characteristic singular- 
ities. 

The first of Eqs.(6.3) enables us to determine function g(z) We denote by ii = -]ap'aG,l 



Periodic solutions in the problem of motion of a solid 397 

the constant constituent aFlaG of functions in relation to variable g, and transform this 
equation to the form of Lagrange equation 

(6.6) 

where [F,] means the averaging of function Fi with respect to variable g . 
The solution of Eq.(6.6) is represented by a Lagrange series. Consequently, the remaind- 

er g-s is a periodic function of variable z of period T = 2niI which differs from the per- 
iod of the respective generating solution T = 2niia. This shows that the variables L, I, G, g 
are in conformity with formulas f6.2) and (6.3) also periodic functions of 'F of period T. 

Thus the periods of the generating and respective periodic solutions differ by a quantity of 
order p. Xn celestial mechanics similar solutions are called periodic solutions of the 
Schwarzschild type. 

Finally, the second quadrature in (6.3) determines the variable /S(T) as a conditionally 
periodic function of the form h(r)= PAZ-~- y(r), where pi\18 is the angular precession velocity 
of vector G, and Y(t) is a periodic function of T of period T. 

We note in conclusion that similar classes of solutions can be obtained and investigated 
by the same method in the case of a solid with a dynamically arbitrary structure on the assump- 
tion that r_l=(nlnl'o')a~i. For this it is sufficient to use equations of motion in terms of 
variables "action-angle" introduced on the basis of the Euler-Poinsot problem. New sets of 
periodic and conditionally periodic solutions and, moreover, be readily established by using 
the method of Poincare and of equations of rotary motion of a solid, expressed in terms of 
the "action- angle" variables that are to be obtained on the basis of problems of solid body 
dynamics with the Lagrange and Kovalevska solutions. 
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